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Four-wave interactions in plasmas and other 
nonlinear media 
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B-9000 Gent, Belgium 

Received 3 August 1981 

Abstract. The nonlinear interaction between waves in plasmas or other nonlinear media is 
studied using a general formalism based on two timescales and allowing for the presence of 
negative-energy waves when necessary. Using coupled-mode theory, based on selection 
rules between four frequencies and four wavenumbers, allows a description of the inter- 
actiomfor conservative media, where the remainder of the waves outside the selected four 
acts as a noise in the system through an equivalent frequency mismatch. The solutions for 
the interacting amplitudes are given via elliptic functions, indicating a slow oscillatory 
exchange of energy or an explosive instability. The mere presence of negative-energy waves 
is not sufficient to obtain an explosive instability and a discussion is given of the necessary 
conditions for such an instability. For some special cases the threshold and growth rate for 
the instability are calculated, and it is found that the threshold increases linearly with the 
total equivalent frequency mismatch. 

1. Introduction 

In comparison with the vast body of literature about three-wave interactions, of which 
an excellent survey was given by Weiland and Wilhelmsson (1977), relatively little has 
been published about four-wave interactions. The reason for this somewhat benign 
neglect lies in the fact that a four-wave interaction (through one set of selection rules) is 
essentially a process of an order higher than the corresponding three-wave interaction. 

However, there are physically relevant situations where the selection rules for 
three-wave interactions cannot be fulfilled, as in the case of interaction between 
longitudinal plasma waves. Then a four-wave interaction becomes the first nontrivial 
nonlinear process. Moreover, the advent of powerful wave sources should make this 
effect more easily observable, especially in plasmas. Four-wave interactions are not 
confined to plasma physics alone, where they constitute a feature of novel interest, but 
have been studied before in nonlinear optics (Bloembergen 1965) or in the interaction 
between gravity waves on the surface of water tanks (Phillips 1974). All these 
interaction phenomena share some common characteristics, and it is thus of interest to 
give as general a description as possible, more general than the otherwise beautiful 
series of papers by Boyd and Turner (1972, 1973, 1977, 1978) which start from a 
Lagrangian description for wave-wave interactions in plasmas. In view of the basic 
characteristics of four-wave interactions, as found from the present paper, basic 
characteristics which do not depend on the detailed expressions for the coupling 
coefficients, it comes as no surprise that the conclusions presented here largely parallel 
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those recently given for four-wave interactions in plasmas by Turner (1980). One of the 
salient points of our general treatment is a careful discussion of the coupling in third 
order between all waves present in the system. For conservative media the waves 
outside the selection rules for four waves can be lumped together as a kind of noise, 
manifesting itself as a supplementary frequency shift. 

Later in the paper, special attention has been paid to the necesSary and sufficient 
conditions for explosive instabilities. Such instabilities are a distinct possibility in 
plasmas where beams and negative-energy waves can easily be found, especially in 
astrophysical applications with its many energy sources to feed instabilities. 

2. General Oormulation 

For a given wave-interaction problem in a nonlinear medium one starts from 

Lu = N ( u ) ,  (1) 

where L is some linear and N a nonlinear operator, and U represents the unknown 
dependent variables. The linear approximation to U has the form of a superposition of n 
waves: 

ulin= f aj(t)expi(kix-wit)+cc. 
j = 1  

Here ai is the complex amplitude of the jth wave with wavevector kj and frequency U,. 

Due to the nonlinear interaction, the amplitudes ai could vary slowly compared to the 
fast phase changes of the waves. One requires ulin to be a solution of the linearised form 
of (I), 

LOUlin = 0, (3) 

where Lo contains the space and fast time derivatives of L but does not take into account 
any slow time variation. For each wave wi and ki are thus connected through a 
dispersion law, which can be computed once L and hence also LO is given. Once the 
linear approximation is thus known, a perturbation scheme is applied to (l), in which 
the second-order terms (quadratic in the wave amplitudes ai) give rise to three-wave 
interactions and the third-order or cubic terms to four-wave interactions. If inter- 
actions of the three-wave type are not possible, the first significant contribution to the 
slow time variations of ai will come from the four-wave interactions. Using symmetric 
selection rules for the first four waves (a suitable renumbering is always possible), 

with S a small frequency mismatch, leads to a set of amplitude equations of the form 

aa n 

-= ihldZd3d4 exp(-iSt)+i pllaldial, 
at 1=1 
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aa4 n 
- = ih4dld2d3 exp(-ist) + i 1 p4rarala4, 
at /=1 

%= i f pjlalaraj ( j  = 5 , .  . . , n ) .  
at 

The coupling coefficients are iAi ( j  = 1,2 ,3 ,4) ,  insofar as the coupling is resonant, i.e. 
determined by the selection rules or resonance conditions (4), and ipj/ ( j ,  1 = 1,. . . , n )  
for the nonresonant part of the interaction. The bar signifies complex conjugation. It is 
a peculiarity of third-order compared with second-order interaction that the 
nonresonant terms seem to couple all the waves present in the nonlinear medium, even 
without specific selection rules. There are various ways of deriving ( S ) ,  either through a 
time-averaging over the fast phase changes in the third-order equation derived upon 
expanding (1) or the equivalent use of a multiple-timescale formalism. The inter- 
mediate steps in going from (1) to (5) are given elsewhere (Verheest 1976, 1980), but 
these are not needed to follow the subsequent discussion. 

( 5 )  can be rewritten as 

In general, hj and pi/ will be functions of the different k, and wm involved, and these 
could be computed if the starting point (1) were known explicitly. If this is not the case, 
one uses the general principle that (1) is invariant for a reversal of space and time, which 
is usually the case in the absence of dissipation. This means in (2) that 

aj(-t)  = d j ( t ) ,  (7) 
and this in turn shows that in (5) or (6) A j  and pi/ as defined are real quantities, which is 
why the imaginary unit was written separately from the outset. A more detailed 
discussion of the use and limitations of this principle is given by Verheest (1980). 

(1 = 5 ,  , . . , n ) .  

From (6) it thus follows that 

a(a&)/at = 0 (8) 
The amplitudes of the waves outside the interacting quadruplet remain constant in 
modulus and the first four equations in (6) can be rewritten as: 

aai 4 

at  / = 1  
c i j -  = ihjdlii2ii3d4 exp(-ist) + i pilaitilajdi +iv,ajaj, ( j  = 1,2 ,3 ,4)  

if 

(9) 

is the constant influence of the noise outside the quadruplet of interacting waves. From 
now on the summation indices will only run from 1 to 4 unless explicitly indicated 
otherwise. With the substitution 
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(9) is transformed into 

where sj is the sign of Ai. In this way the resonant coupling coefficients are all reduced 
to *l. 

Putting 

bi = pi exp iai (13) 

and splitting (12) into its real and imaginary parts yields 

-_- a’’- si p1pzp3p4 sin 4, 
at Pi 

where t,b stands for a1 + a2 + cy3 + cy4 + St.  An equation for + is readily found as 

=E 4 p1p2p3p4 cos $+I mipf + A. 
i Pi i 

Here mi is 

and A represents the total equivalent phase mismatch, due in part to the original 
frequency mismatch and in part to the outside noise: 

4 n  

A = S + C  v j = S +  p j l l ~ r J ~ ,  
i j = l  1=5  

keeping (10) in mind. 
Upon inspection of (14) one sees that 

slp l (apl /a t )  = szP2(ap2/at) = s3p3(ap3/at) = s4p4(ap4/at), (18) 
leading after integration to a first set of invariants, the Manley-Rowe (1956) relations. 
Before writing them down, one can check on (14) that the case where three or all of the si 
equal -1 can be transformed into the case where three or all of the si equal +1 by 
shifting $ to t,b + T. Hence in all generalisation at least two of the signs si can be taken to 
be positive. Furthermore, for the waves with positive coupling coefficients, the 
difference between the squares of their amplitudes remains constant. Through a 
judicious renumbering one can then always take p1 as the smallest amplitude among the 
waves with positive coupling coefficients. The Manley-Rowe relations found from (18) 
are then: 

Hence, if pl(t) is bounded for all t, the other pi ( t )  will be bounded as well. Now if one 
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wave has a negative coupling coefficient, say s4 equal to -1, it follows from (19) that 

p: 0) +p: ( t )  = Y4, (20) 

and p:( t )  is bounded by y4, hence all p: ( t )  are bounded. The Manley-Rowe relations 
thus always lead to bounded wave amplitudes, except perhaps in the case when all 
coupling coefficients are positive (or negative) and instabilities may occur, depending on 
other conditions which will be discussed further on. There is another, independent 
invariant connected with the phases: 

4 n  

B =Cmjyj+A= C kj1[~,(0))'-2Ap:(O)+S, (22) 

c = - ~ p ' :  (0) - ~ p :  (01, 
i j=l 1=1 

if the initial phases are arranged so that $(O) equals &r. A is determined solely by the 
coupling coefficients, hence by the structure of the nonlinear medium, whereas B and C 
contain both the coupling coefficients and the initial conditions. 

With the help of the Manley-Rowe relations (19) and the phase invariant (21), it is 
possible to eliminate from (14) and (15) all variables except one, e.g. p l ( t ) ,  and get 

( a p : l W 2  =fb:). (23) 

Here f is a quartic in p:, 

f(p:)=4p:(p: +YZ)(SSP: +YJ)(s~P: +~4)-(Ap': + B P : + C ) ~  

=cop? +4clp': +6c2p': +4c3p: +c4, (24) 
with coefficients 

CO =4s3sq-AZ, 

ci = s ~ s ~ Y z + s ~ Y ~ + s ~ Y ~ - ~ A B ,  

cz = $ ( S ~ Y Z Y ~  + ~ 3 ~ 4  + ~ 3 ~ 4 ~ 2 )  - M' - iB ', 

c4 = -cz. 

(25) 

c3 = y z y y 3 ~ 4 - k  

Just because in (24) f ( p : )  is a quartic, p: will be given as a function of t by an elliptic 
function. The character of this solution will be determined solely by the location of 
p:(O) compared to the roots of f(p:) (Pars 1965). Hence the problem is essentially 
reduced to finding the roots of f ( p : ) .  On physical grounds both f(p:) and p: are 
required to be positive. If p:(O) lies between two positive and single roots of f(p:) then 
p: ( t )  will oscillate periodically between these two roots and thus be bounded. O n  the 
other hand, if p:(O) lies beyond the largest positive root (supposed simple for the time 
being), p: ( t )  is no longer bounded and an explosive instability will occur, as p:( t )  
reaches an infinite value in a finite time (Gradshteyn and Ryzhik 1965). 

When the endpoint of the interval, in which p:(O) lies, is a multiple root of f(p:), 
then p: ( t )  will need an infinite time to approach the value of this root, and a limiting or 
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saturation process occurs. Finally, when the lar est positive root is a multiple one, and 
p:(O) lies beyond it, the ultimate behaviour of p l ( t )  depends upon the sign of p f ( O ) / a t .  
When this is negative, p: ( t )  will decrease from pf (0) towards the value of the multiple 
root and requires an infinite time to do so. However, if p:( t )  increases away from p: (01, 
an explosive instability occurs. Some of these cases are illustrated in figure 1. 

4 

9: 

Figure 1. Examples of the curves of f(p:) against p : ,  indicating regimes of oscillatory, creep 
or explosively unstable behaviour for p:. 

3. Explosive instabilities 

Having discussed the different types of behaviour one may expect for p: (t), we will try 
to elucidate in this section precisely when an explosive instability may occur. 

A first and necessary criterion comes from the Manley-Rowe relations (19) which, 
as said already, always yield bounded solutions, except when a11 coupling coefficients 
have the same sign (here positive by choice). Hence we take s3 and s4 equal to one. 
Formulated as such, this is not a very illuminating criterion, and we here need a 
discussion of the wave energies involved. As we have chosen to start from a symmetric 
selection rule (4), of necessity at least one and in all practical cases two of the wave 
frequencies, as considered up to now, will be negative. The total energy in the four 
interacting waves can be computed from the Manley-Rowe relations (19) as being 
Xi siofp,? (t) and is constant, up to a slow variation due to the original phase mismatch S. 
The sign of the individual wave energies is thus given by the sign of spi. In the case we 
are discussing, with one or two oj negative and all si positive, one or two waves will be 
negative-energy waves. It is worth contrasting this with the case of three-wave 
interaction (Coppi eta1 1969) where the mere presence of a negative-energy wave was 
not only necessary but also sufficient to bring about an explosive instability. Here we 
see that the presence of negative-energy waves is a prerequisite for the occurrence of an 
explosive instability, but by no means sufllcient, as discussed further on. 

The next criterion is given by the sign of CO, the leeing coefficient inf(p:). If CO were 
negative, f ( p : )  would also become negative for large enough values of p:,  and hence 
only bounded solutions for p: are possible. The case when co vanishes can be left out of 
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1 

the discussion here, as f ( p : )  then reduces to a cubic, which is the generic form 
encountered in three-wave interactions, about which many papers have been written 
(see e.g. Weiland and Wilhelmsson 1977). So a further necessary condition for 
instability is that co be positive, or more explicitly: 

-4 <Emi < 4. (26) 
i 

In contrast with the opinion advanced by Turner (1980), this is not yet sufficient to 
conclude that an instability will occur, because the number of positive roots of f ( p : )  
could be one or three. Once co is supposed positive, one finds that 

1 

and thus f ( p : )  has at least one root in ] -co,O] and one in [0, +CO[. The case of f ( 0 )  
vanishing can be included as a special case. If there is only one,positive root, one can 
immediately conclude that an instability is going to occur, whereas in the case of three 
positive roots, p l ( 0 )  has to be greater than the largest of these roots, which thus 
amounts to a threshold for the instability. However, great care has to be exercised in 
discussing these matters, as the determination of the roots of fb:) and of a possible 
threshold is not independent of initial conditions, because both pT(0) and the yj enter 
into f (p:  ). 

The domain where f(p:) has only one positive root is indicated in figure 2 for 
different values of c1, c2 and c3 (co>O and c4 is supposed negative), using Descartes’ 
theorem (see e.g. Mishina and Proskuryakov 1965). In the shaded areas of figure 2, 
f ( p : )  has one positive root if its discriminant (Dehn 1930) 

D = (256 /~z ) (g l -  27g3) (28) 

2 

is negative, where 
2 gz=CoC4-4CiC3+3Cz, 

and three positive roots when D is positive (see e.g. Mishina and Proskuryakov 1965). 
The possibility of an instability is thus best summed up in a kind of flow chart, as 

shown in figure 3. It is seen that the set of conditions, requiring that all si be +1, that co 

Figure 2. Regions in CZ. c3 parameter space where f ( p : )  has one or three positive real roots. 
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NO = ::::::::;:’:’”= 1 

positive root 3 positive threshold7 
roots 

(Explosive 1 
instabilities 

F i m  3. Chart showing the different necessary conditions in order to obtain an explosive 
instability. 

be positive and that p:(O) be greater than the largest root offb:), together constitute a 
necessary and sufficient condition to obtain an explosive instability. 

4. Special cases 

As an example we consider the special case where all the waves have initially the same 
normalised amplitudes, 

(30) P: (0) = P$ (0) = P:(o)  = P m ,  

all the yi are zero and (24) reduces to 

f @ :  1 = 4 ~ :  - (Apt + BP: - Ap‘: (0) - Bp: (())I2 
= 4 ~ :  -(IAIP: +&: - I A I p ~ ( O ) - & ~ ( O ) ) * ,  

where 

B = B sgnA = Assgn A. 

The roots of (31) are given by 

with 

M = j2 - 4(2 - IA I ) (  IA Ip: (0) + B p :  (0)), 

N = 8’ + 4(2 + IA l)(lA Ip? (0) + Bp: (0)). 

Whether these roots are real or not depends upon the signs of M and N. 

(34) 
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When & is positive, (p:)3,4 are always real, whereas Cp:>~,z are only real as long as M 
is not negative. M is negative when 

(sgn AA > 0) 2 
(35) 

An explosive instability is only possible and then also occurs, when p: (0) satisfies the 
threshold condition (35). Otherwise all solutions are bounded. The discussion is 
somewhat more involved when 6 is negative, because then the following regimes exist 
for progressively larger values of p: (0): 

(i) M,NPO: (P:)i =S 0 c (P? )z<P?(o )  < @?Is Q (P:)4, 

(ii) M 20 ,  NCO: (p:)1 s 0 s (P:,2 c p: (01, 
(37) 

(iii) M,NsO:  (P: ) I  0 (P? )z (P:  13 (P ? 14 < P ?  (01, 

(iv) M < 0 ,  N S O :  b:>3 (p?)4  < P:  (0). 

Explosive instabilities occur in all regimes but (i), to which the threshold condition 
corresponds 

(sgn AA C 0). 
IAI 2 

214 2 + 1 4  
- [ 1 - (-) ‘1 c p : (0) 

These thresholds differ quite a bit from those given by Turner (1980), because nothing 
special was supposed about the relative values of A and B = A. The total equivalent 
mismatch can have either sign depending on the precise balance of the noise versus the 
initial frequency mismatch. The frequency mismatch S is of necessity a small quantity, 
because otherwise the whole expansion scheme would become void, but the noise 
outside the interacting wave quadruplet need not be small in the same sense. In any 
case, the instability threshold, whether given by (35) or by (38), depends linearly upon 
IAI. When A is supposed negligible, 

(p:)4 =CIA)l(2 + IAI)l”Zp:(0) (39) 

and the instability time can be computed as 

(Gradshteyn and Ryzhik 1965) where F(& s) is the Legendre elliptic function of the first 
kind with argument 6 and modulus s. For a given nonlinear medium, A is a known 
quantity independent of initial conditions, and hence the product reXpp: (0) is constant. 
For a further discussion of the growth rates for explosive instabilities, the reader is 
referred to Turner (1980), where it is argued that such growth rates are smaller for 
four-wave interactions than for the better known three-wave interactions. Hence the 
four-wave explosive instability will be a much slower process, not only because it occurs 
on an intrinsically slower timescale, but also because of smaller growth rates. 
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However, the interest of explosive instabilities lies in the fact that one starts from 
three or four linearly stable waves, which slowly interact to produce an unstable 
situation, so that the whole picture remains stable for a rather long time (compared with 
a period of oscillation) before shooting up in a sudden and irrevocable way, as may be 
observed in some experimental or astrophysical cases such as solar flares for example. 

As a general summary one can say that in the previous sections a qualitative 
discussion has been given of four-wave interactions in general media, with a special 
emphasis on a correct delimitation of when an explosive irlstability might occur. 
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